Linear Least Squares Estimates and Nonlinear Means
نویسندگان
چکیده
The consistency and asymptotic normality of a linear least squares estimate of the form (X,X)-X’Y when the mean is not X/I is investigated in this paper. The least squares estimate is a consistent estimate of the best linear approximation of the true mean function for the design chosen. The asymptotic normality of the least squares estimate depends on the design and the asymptotic mean may not be the best linear approximation of the true mean function. Choices of designs which allow large sample inferences to be made about the best linear approximation of the true mean function are discussed. Ah4S Subject Classification: 62F12, 62F35, 62505.
منابع مشابه
A Comparative Study of Least-Squares and the Weak-Form Galerkin Finite Element Models for the Nonlinear Analysis of Timoshenko Beams
In this paper, a comparison of weak-form Galerkin and least-squares finite element models of Timoshenko beam theory with the von Kármán strains is presented. Computational characteristics of the two models and the influence of the polynomial orders used on the relative accuracies of the two models are discussed. The degree of approximation functions used varied from linear to the 5th order. In ...
متن کاملUsing an Efficient Penalty Method for Solving Linear Least Square Problem with Nonlinear Constraints
In this paper, we use a penalty method for solving the linear least squares problem with nonlinear constraints. In each iteration of penalty methods for solving the problem, the calculation of projected Hessian matrix is required. Given that the objective function is linear least squares, projected Hessian matrix of the penalty function consists of two parts that the exact amount of a part of i...
متن کاملTime-Varying Moving Average Model for Autocovariance Nonstationary Time Series
In time series analysis, fitting the Moving Average (MA) model is more complicated than Autoregressive (AR) models because the error terms are not observable. This means that iterative nonlinear fitting procedures need to be used in place of linear least squares. In this paper, Time-Varying Moving Average (TVMA) models are proposed for an autocovariance nonstationary time series. Through statis...
متن کاملAsymptotic Properties of Nonlinear Least Squares Estimates in Stochastic Regression Models Over a Finite Design Space. Application to Self-Tuning Optimisation
We present new conditions for the strong consistency and asymptotic normality of the least squares estimator in nonlinear stochastic models when the design variables vary in a finite set. The application to self-tuning optimisation is considered, with a simple adaptive strategy that guarantees simultaneously the convergence to the optimum and the strong consistency of the estimates of the model...
متن کاملWavelets and Optimal Nonlinear Function Estimates
We consider the problem of estimating a smooth function from noisy, sampled data. We use orthonormal bases of compactly supported wavelets to constriuct nonlinear function estimates which can significantly outperform evey linear method (kernel, smoothing spline, sieve, ...). Our estimates are simple nonlinear functions of the empirical wavelet coefficients and are asymptotically minimax over ce...
متن کامل